浮头导航网

专注编程技术分享的开发者社区

JS前端压缩算法——WWDHCAPOF-算法导论论文——东方仙盟算法





图解Blink-Tree:B+Tree的一种并发优化结构和算法

概论

由于Blink-Tree本质上是B+Tree的一种优化,所以要理解它首先要对B+Tree有一些了解。

衡量SIP设备性能的指标和算法以及八个测试场景RFC7502规范分享

在SIP网络环境中,为了满足用户的需求和功能实现,需要部署多种SIP网络设备或者网元来,例如注册服务,转发代理服务器,有状态代理,SBC和B2BUA等支持业务的需求。因为业务需求复杂,很多时候,这些设备的执行性能存在很多的偏差。其性能认知的排查很大程度上取决于测试手段是否规范。规范的测试手段能够保证其性能测试取得一个比较权威的结果。另外,具体测试项目或者被测设备(DUT)的必要参数参数也是非常重要的指标。其参数指标包括SIP注册速率,会话创建速率等。实际上,RFC7502规范(信息类)提供了针对SIP执行性能的参数指标和针对这些参数指标的方法手段。在以下的章节中,我们将根据RFC7502的内容,为大家介绍其基准测试的手段和测试项目的用例说明。

密码学基础-对称密码算法(Symmetric-key Algorithm)

对称密码算法(Symmetric-key Algorithm)


对称算法 是指加密秘钥和解密秘钥相同的密码算法,又称为 秘密秘钥算法 或 单密钥算法 。

智能算法导论 第十六、七章 量子粒子群优化、最小二乘

量子行为粒子群算法是一种基于量子行为和粒子群算法的优化算法,它通过模拟粒子的量子行为来实现高效的优化。以下是一个使用Python实现量子行为粒子群算法的示例:

import numpy as np

# 定义量子行为粒子群算法
class QuantumBehavioralParticleSwarmOptimization:
    def __init__(self, cost_function, num_dimensions, num_particles=50, num_iterations=100, w=0.729, c1=1.49445, c2=1.49445, h_bar=1, omega=1):
        self.cost_function = cost_function
        self.num_dimensions = num_dimensions
        self.num_particles = num_particles
        self.num_iterations = num_iterations
        self.w = w
        self.c1 = c1
        self.c2 = c2
        self.h_bar = h_bar
        self.omega = omega

    # 初始化粒子群
    def init_particles(self):
        particles = {
            'position': np.random.uniform(-1, 1, size=(self.num_particles, self.num_dimensions)),
            'velocity': np.zeros((self.num_particles, self.num_dimensions)),
            'best_position': None,
            'best_fitness': np.inf
        }
        particles['best_position'] = particles['position'].copy()
        particles['best_fitness'] = np.array([self.cost_function(p) for p in particles['best_position']])
        return particles

    # 更新粒子群
    def update_particles(self, particles, global_best_position):
        particles['velocity'] = self.w * particles['velocity'] + \
                                self.c1 * np.random.rand(self.num_particles, self.num_dimensions) * (particles['best_position'] - particles['position']) + \
                                self.c2 * np.random.rand(self.num_particles, self.num_dimensions) * (global_best_position - particles['position'])
        particles['position'] += particles['velocity']
        particles['position'] = np.clip(particles['position'], -1, 1)
        particles['best_fitness'] = np.array([self.cost_function(p) for p in particles['best_position']])
        current_fitness = np.array([self.cost_function(p) for p in particles['position']])
        better_fitness = current_fitness < particles['best_fitness']
        particles['best_fitness'][better_fitness] = current_fitness[better_fitness]
        particles['best_position'][better_fitness] = particles['position'][better_fitness]

    # 计算概率分布函数
    def probability_distribution_function(self, particles):
        position_mean = np.mean(particles['position'], axis=0)
        position_std = np.std(particles['position'], axis=0)
        probability_distribution = np.zeros((self.num_particles, self.num_dimensions))
        for i in range(self.num_particles):
            for j in range(self.num_dimensions):
                probability_distribution[i, j] = np.exp(-(particles['position'][i, j] - position_mean[j])**2 / (2 * position_std[j]**2))
        probability_distribution /= np.sum(probability_distribution, axis=0)
        return probability_distribution

    # 运行量子行为粒子群算法
    def run(self):
        particles = self.init_particles()
        global_best_position = particles['best_position'][np.argmin(particles['best_fitness'])]
        for i in range(self.num_iterations):
            self.update_particles(particles, global_best_position)
            probability_distribution = self.probability_distribution_function(particles)
            for j in range(self.num_particles):
                particles['position'][j] = np.random.choice(particles['position'][:, j], p=probability_distribution[:, j])
            particles['position'] = np.clip(particles['position'], -1, 1)
            particles['best_fitness'] = np.array([self.cost_function(p) for p in particles['best_position']])
            current_fitness = np.array([self.cost_function(p) for p in particles['position']])
            better_fitness = current_fitness < particles['best_fitness']
            particles['best_fitness'][better_fitness] = current_fitness[better_fitness]
            particles['best_position'][better_fitness] = particles['position'][better_fitness]
            global_best_position = particles['best_position'][np.argmin(particles['best_fitness'])]
        return global_best_position
<< 1 >>
控制面板
您好,欢迎到访网站!
  查看权限
网站分类
最新留言